The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Behavior constrained policy optimization has been demonstrated to be a successful paradigm for tackling Offline Reinforcement Learning. By exploiting historical transitions, a policy is trained to maximize a learned value function while constrained by the behavior policy to avoid a significant distributional shift. In this paper, we propose our closed-form policy improvement operators. We make a novel observation that the behavior constraint naturally motivates the use of first-order Taylor approximation, leading to a linear approximation of the policy objective. Additionally, as practical datasets are usually collected by heterogeneous policies, we model the behavior policies as a Gaussian Mixture and overcome the induced optimization difficulties by leveraging the LogSumExp's lower bound and Jensen's Inequality, giving rise to a closed-form policy improvement operator. We instantiate offline RL algorithms with our novel policy improvement operators and empirically demonstrate their effectiveness over state-of-the-art algorithms on the standard D4RL benchmark.
translated by 谷歌翻译
提出测试释放(PTR)是一个差异隐私框架,可符合局部功能的敏感性,而不是其全球敏感性。该框架通常用于以差异性私有方式释放强大的统计数据,例如中位数或修剪平均值。尽管PTR是十年前引入的常见框架,但在诸如Robust SGD之类的应用程序中使用它,我们需要许多自适应鲁棒的查询是具有挑战性的。这主要是由于缺乏Renyi差异隐私(RDP)分析,这是一种瞬间的私人深度学习方法的基础。在这项工作中,我们概括了标准PTR,并在目标函数界定全局灵敏度时得出了第一个RDP。我们证明,与直接分析的$(\ eps,\ delta)$ -DP相比,我们的RDP绑定的PTR可以得出更严格的DP保证。我们还得出了亚采样下PTR的算法特异性隐私扩增。我们表明,我们的界限比一般的上限和接近下限的界限要紧密得多。我们的RDP界限可以为PTR的许多自适应运行的组成而更严格的隐私损失计算。作为我们的分析的应用,我们表明PTR和我们的理论结果可用于设计私人变体,用于拜占庭强大的训练算法,这些变体使用可靠的统计数据用于梯度聚集。我们对不同数据集和体系结构的标签,功能和梯度损坏的设置进行实验。我们表明,与基线相比,基于PTR的私人和强大的培训算法可显着改善该实用性。
translated by 谷歌翻译
多年来,使用单点监督的对象检测受到了越来越多的关注。在本文中,我们将如此巨大的性能差距归因于产生高质量的提案袋的失败,这对于多个实例学习至关重要(MIL)。为了解决这个问题,我们引入了现成建议方法(OTSP)方法的轻量级替代方案,从而创建点对点网络(P2BNET),该网络可以通过在中生成建议袋来构建一个互平衡的提案袋一种锚点。通过充分研究准确的位置信息,P2BNET进一步构建了一个实例级袋,避免了多个物体的混合物。最后,以级联方式进行的粗到精细政策用于改善提案和地面真相(GT)之间的IOU。从这些策略中受益,P2BNET能够生产出高质量的实例级袋以进行对象检测。相对于MS可可数据集中的先前最佳PSOD方法,P2BNET将平均平均精度(AP)提高了50%以上。它还证明了弥合监督和边界盒监督检测器之间的性能差距的巨大潜力。该代码将在github.com/ucas-vg/p2bnet上发布。
translated by 谷歌翻译
最近,对分布(OOD)数据具有相关性转移的概括引起了极大的关注。相关转移是由与类标签相关的虚假属性引起的,因为它们之间的相关性可能在训练和测试数据中有所不同。对于这样一个问题,我们表明,鉴于类标签,有条件独立的虚假属性模型是可推广的。基于此,提出了控制OOD泛化误差的度量条件伪变异(CSV),以衡量这种条件独立性。为了改善OOD的概括,我们将培训过程正常使用拟议的CSV。在温和的假设下,我们的训练目标可以作为非Convex-Concave Mini-Max问题提出。提出了具有可证明的收敛速率的算法来解决该问题。广泛的经验结果验证了我们算法在改善OOD概括方面的功效。
translated by 谷歌翻译
尽管机器学习模型迅速推进了各种现实世界任务的最先进,但鉴于这些模型对虚假相关性的脆弱性,跨域(OOD)的概括仍然是一个挑战性的问题。尽管当前的域概括方法通常着重于通过新的损耗函数设计在不同域上实施某些不变性属性,但我们提出了一种平衡的迷你批次采样策略,以减少观察到的训练分布中域特异性的虚假相关性。更具体地说,我们提出了一种两步方法,该方法1)识别虚假相关性的来源,以及2)通过在确定的来源上匹配,构建平衡的迷你批次而没有虚假相关性。我们提供了伪造来源的可识别性保证,并表明我们提出的方法是从所有培训环境中平衡,无虚拟分布的样本。实验是在三个具有伪造相关性的计算机视觉数据集上进行的,从经验上证明,与随机的迷你批次采样策略相比,我们平衡的微型批次采样策略可改善四个不同建立的域泛化模型基线的性能。
translated by 谷歌翻译
基于持续的同源性的拓扑损失在各种应用中都表现出了希望。拓扑损失强制执行该模型以实现某些所需的拓扑特性。尽管取得了经验成功,但对损失的优化行为的了解却很少。实际上,拓扑损失涉及在优化过程中可能振荡的组合构型。在本文中,我们引入了通用正规拓扑感知损失。我们提出了一个新颖的正则化项,并修改了现有的拓扑损失。这些贡献导致了新的损失函数,不仅强制实施模型具有所需的拓扑行为,而且还可以达到满足收敛行为。我们的主要理论结果确保在轻度假设下可以有效地优化损失。
translated by 谷歌翻译
之前在为人类运动提供合理的限制方面发挥着重要作用。以前的作品在不同情况下遵循各种范式的运动前锋,导致缺乏多功能性。在本文中,我们首先总结了先前运动的不可或缺的特性,并因此设计了一种学习多功能运动的框架,其模拟人类运动的固有概率分布。具体地,对于有效的先前表示学习,我们提出了全局方向归一化,以在原始运动数据空间中删除冗余环境信息。此外,将基于序列的基于段的频率引导引入编码阶段。然后,我们采用去噪培训方案以可学习的方式从输入运动数据中解散环境信息,以产生一致和可区分的表示。在三个不同的任务中嵌入我们的运动前嵌入我们的运动,我们进行了广泛的实验,并且定量和定性结果均表现出我们之前运动的多功能性和有效性。我们的型号和代码可在https://github.com/jchenxu/human-motion-porion -prior上获得。
translated by 谷歌翻译
尽管取得了巨大的成功,但深入的学习严重遭受鲁棒性;也就是说,深度神经网络非常容易受到对抗的攻击,即使是最简单的攻击。灵感来自脑科学最近的进步,我们提出了一种新的内部模型(DIM),这是一种基于新的生成自动化器的模型来解决这一挑战。模拟人类大脑中的管道进行视觉信号处理,暗淡采用两级方法。在第一阶段,DIM使用丹组器来减少输入的噪声和尺寸,反映了塔马拉姆的信息预处理。从主视觉皮质中的内存相关迹线的稀疏编码启发,第二阶段产生一组内部模型,一个用于每个类别。我们评估了42次对抗攻击的衰弱,表明Dim有效地防御所有攻击,并且优于整体鲁棒性的SOTA。
translated by 谷歌翻译
尽管基于模型的增强学习(RL)方法被认为是更具样本的高效,但现有算法通常依赖于复杂的规划算法与模型学习过程紧密粘合。因此,学习模型可能缺乏与更专业规划者重新使用的能力。在本文中,我们解决了这个问题,并提供了在没有奖励信号的指导的情况下有效地学习RL模型的方法。特别是,我们采取了一个插件求解器方法,我们专注于在探索阶段学习模型,并要求在学习模型上的\ emph {任何规划算法}可以给出近最佳的政策。具体而言,我们专注于线性混合MDP设置,其中概率转换矩阵是一组现有模型的(未知)凸面组合。我们表明,通过建立新的探索算法,即插即用通过\ tilde {o}来学习模型(d ^ 2h ^ 3 / epsilon ^ 2)$与环境交互,\ emph {任何} $ \ epsilon $ -optimal Planner在模型上给出$ O(\ epsilon)$ - 原始模型上的最佳政策。此示例复杂性与非插入方法的下限与下限匹配,并且是\ EMPH {统计上最佳}。我们通过利用使用伯尔斯坦不等式和指定的线性混合MDP的属性来实现仔细的最大总差异来实现这一结果。
translated by 谷歌翻译